Thesis Abstract cohort 2012-2014 The International Master of Science in Fire Safety Engineering

ARNE INGHELBRECHT

Evaluation of the burning behaviour of wood products in the context of structural fire design

The possibility of 40+ storey buildings made mostly out of timber is being studied by many structural engineering firms as a sustainable form of tall building construction. However building codes and laws require tall buildings to be made out of non-combustible materials which inevitably force all timber members to be covered by non-combustible materials, mainly plaster boards. This approach takes away the environmental benefit of timber buildings. A framework is introduced in order to demonstrate how an improved understanding of the fire behaviour of timber might lead to an adequate structural design of fire exposed members. A literature review is given in order to demonstrate the discrepancy between common design practice and the state-of-the art. This review beckons the question what happens with structural timber elements near extinction of the contents of a fire. Do the structural elements really sustain burning beyond the combustion of the building contents, as is commonly assumed for structural design? To provide an answer, bench-scale tests are conducted on novel timber products. It is found that for structural applications wood products usually self-extinguish. However specifically for CLT elements ply delamination implies a potential for significant fire contribution and structural failure well before self-extinguishment becomes relevant.